51 research outputs found

    Equivalence-Checking on Infinite-State Systems: Techniques and Results

    Full text link
    The paper presents a selection of recently developed and/or used techniques for equivalence-checking on infinite-state systems, and an up-to-date overview of existing results (as of September 2004)

    Deciding Semantic Finiteness of Pushdown Processes and First-Order Grammars w.r.t. Bisimulation Equivalence

    Get PDF
    The problem if a given configuration of a pushdown automaton (PDA) is bisimilar with some (unspecified) finite-state process is shown to be decidable. The decidability is proven in the framework of first-order grammars, which are given by finite sets of labelled rules that rewrite roots of first-order terms. The framework is equivalent to PDA where also deterministic popping epsilon-steps are allowed, i.e. to the model for which Senizergues showed an involved procedure deciding bisimilarity (FOCS 1998). Such a procedure is here used as a black-box part of the algorithm. For deterministic PDA the regularity problem was shown decidable by Valiant (JACM 1975) but the decidability question for nondeterministic PDA, answered positively here, had been open (as indicated, e.g., by Broadbent and Goeller, FSTTCS 2012)

    Structural Liveness of Immediate Observation Petri Nets

    Full text link
    We look in detail at the structural liveness problem (SLP) for subclasses of Petri nets, namely immediate observation nets (IO nets) and their generalized variant called branching immediate multi-observation nets (BIMO nets), that were recently introduced by Esparza, Raskin, and Weil-Kennedy. We show that SLP is PSPACE-hard for IO nets and in PSPACE for BIMO nets. In particular, we discuss the (small) bounds on the token numbers in net places that are decisive for a marking to be (non)live.Comment: Significantly extended w.r.t. the previous versio

    Countdown games, and simulation on (succinct) one-counter nets

    Get PDF
    We answer an open complexity question by Hofman, Lasota, Mayr, Totzke (LMCS 2016) [HLMT16] for simulation preorder of succinct one-counter nets (i.e., one-counter automata with no zero tests where counter increments and decrements are integers written in binary), by showing that all relations between bisimulation equivalence and simulation preorder are EXPSPACE-hard for these nets. We describe a reduction from reachability games whose EXPSPACE-completeness in the case of succinct one-counter nets was shown by Hunter [RP 2015], by using other results. We also provide a direct self-contained EXPSPACE-completeness proof for a special case of such reachability games, namely for a modification of countdown games that were shown EXPTIME-complete by Jurdzinski, Sproston, Laroussinie [LMCS 2008]; in our modification the initial counter value is not given but is freely chosen by the first player. We also present a new simplified proof of the belt theorem that gives a simple graphic presentation of simulation preorder on one-counter nets and leads to a polynomial-space algorithm; it is an alternative to the proof from [HLMT16].Comment: A part of this paper elaborates arxiv-paper 1801.01073 and the related paper presented at Reachability Problems 201

    Minerva: The curse of ECDSA nonces

    Get PDF
    We present our discovery of a group of side-channel vulnerabilities in implementations of the ECDSA signature algorithm in a widely used Atmel AT90SC FIPS 140-2 certified smartcard chip and five cryptographic libraries (libgcrypt, wolfSSL, MatrixSSL, SunEC/OpenJDK/Oracle JDK, Crypto++). Vulnerable implementations leak the bit-length of the scalar used in scalar multiplication via timing. Using leaked bit-length, we mount a lattice attack on a 256-bit curve, after observing enough signing operations. We propose two new methods to recover the full private key requiring just 500 signatures for simulated leakage data, 1200 for real cryptographic library data, and 2100 for smartcard data. The number of signatures needed for a successful attack depends on the chosen method and its parameters as well as on the noise profile, influenced by the type of leakage and used computation platform. We use the set of vulnerabilities reported in this paper, together with the recently published TPM-FAIL vulnerability as a basis for real-world benchmark datasets to systematically compare our newly proposed methods and all previously published applicable lattice-based key recovery methods. The resulting exhaustive comparison highlights the methods\u27 sensitivity to its proper parametrization and demonstrates that our methods are more efficient in most cases. For the TPM-FAIL dataset, we decreased the number of required signatures from approximately 40 000 to mere 900
    • …
    corecore